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near these points and the suesses in these zones are redistributed and smoothed out.The 
singularities are caused by the fact that the contour y reaches the free boundary and 
they represent a case different from the case in which the region occupied by the inclus- 

ion is internal. 
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Toupin [l] proved that the stresses in a cylindrical rod, caused by application of 
a self-equalizing load at the endface, decrease exponentially with distance from 

the endface. An estimate has been obtained for a constant in the exponential in 
terms of the smallest natural vibrations frequency of an elastic cylinder. 

A determination of the energy decay rate is given below for bodies of arbitrary 

shape and its estimate is given in terms of some characteristics of the body geo- 
metry, including the Poincard and Korn constants of the cross section. These con- 

stants are known in the case of a circular rod and the estimate is given in num- 

bers. 

The dependence of the energy decay rate on the body shape is examined. It 

is shown that for cone-type bodies a powerlaw estimate holds for the energy 
decay which goes into an exponential estimate in the iimit as the cone degene- 

rates into a cylinder. Analogous estimates for the stresses result from the estim- 
ates for the energy. 

1. Determinrtlon of the energy decry rata, Within the framework 
of a geometrically linear theory, let us generally consider an inhomogeneous, anisotropic 

and physically nonlinear elastic solid (see [Z]). We refer the undeformed state of the 

solid to a Cartesian coordinate system z ’ s 2, za (the Greek superscripts a, p, y, . . . 
take on the values 1, 2). 

Let the part of the solid in the half-plane J: > 0 be load-free and let the state of 
stress be caused by some external effects on the part of the solid in the half-plane z < 

0, Further we will study the parameters independent of the nature of these effects, there- 
fore without limiting the generality, it can be assumed that the deformation of the body 
in the ic > 0 half-plane is caused by some surface forces applied in a section of the 

solid by the z = 0 plane. 
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Let I/’ (z) denote a set of points of the body with abscissa greater than z, 52 (x) is 
a section of the body by the plane x = const which separates v (x) from the rest of 

the body (see Fig. 1) , ?J is the elastic energy 
per unit volume, and E is the elastic energy of 

the body V (x) E = S lJdx1dx2dx 

V(r) 
It is assumed that the domain a (5) is bounded 

for each 2. Let the elastic body V (YJ) be defor- 

med by surface forces pi applied at Q and let 
the appropriate density of the elastic energy ~7, 

be calculated for each field of surface forces as 
2 

s a result of solving the elasticity theory problem. 

The subscript p emphasizes that this density de- 

pends on the applied load. 
Let us consider the minimal value of the ratio 

between the “surface” and volume elastic energies 

Fig. 1 

Here the minimum is evaluated over all possible values of the surface load p’. The con- 
stant y evidently depends only on the geometry of the domain V (JJ) and the elastic 

constants, and has the dimensionality (length) -l. If the position of the body relative 
to the coordinate system is fixed, then y becomes a function of 2. The function y (x) 

determines the rate of elastic energy decay. This results from the following assertion. 

Let an elastic body V, 3 V (0) be deformed by self-equilibrated surface forces ap- 

plied at &, 3 &? (0). Then the estimate 

E (5) < E (0) exp (- f r (xc) ds) (1.2) 
0 

holds for the elastic energy E (x) of the part V (2) of the body V. . 

In fact it follows from (1.1) that for any II: 

7 (x) E (5) < 1 Udx1dx2 

NX) 
Using the formula 

dls -=- 
dx s 

’ Udx1dx2 
61 

(1.3) 

(1.4) 

the relationship (1.3) can be rewritten as the differential inequality 

from which (1.2) follows. 
r(x)E(x)+t;$<O 

Notes. 1. In the case of a semi-infinite homogeneous elastic cylinder, the constant 
y is evidently determined completely by the geometry of the cylinder cross section and 
by the elastic constants and is independent of z. Hence 

E (z) < E (0) ewyT (1.5) 

2. The estimate in fl] which corresponds to (1.5) is of the form 
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(1.6) 

Here u. (2) is the smallest natural vibrations frequency of a cylinder of hight I, pM and 

I& are the maximum and minimum elastic moduli , respectively, p is the density and 

I is an arbitrary length not exceeding half the length of the rod. It was used implicitly 

that z > I in deriving (1.6). The inequalities (1.2). (1.5) hold for any 5 > 0. 
3, It is shown in [l] that a point-by-point estimate for the stresses results from the 

estimate for the elastic energy, hence, it is sufficient to examine the question of the rate 

of elastic energy decay. The rate of stress decay for a linearly elastic body is half the 

rate of elastic energy decay. 

4. The selection of the planes LZ = const as the family of surfaces B (2) is not essen- 

tial. Any other family of surfaces separating the domain of load application from the 

rest of the body. For example, in calculating the decay rate of stresses caused by the self- 

balanced load applied to the compact section of the half-space boundary, it is natural 

to take a hemisphere as the surface Q (3) . The choice of the surface is dictated by the 

possibility of obtaining an estimate for y. 
In the terminology defined above, the crux of the Saint Venant principle is the asser- 

tion that 7 differs from zero and is “not too small”. The “proof” of the Saint Venant 

principle reduces to constructing “good enough” lower bounds for y, 
A more accurate formulation of the Saint Venant principle encounters difficulties 

associated with the introduction of the “smallness criterion” for y. For example, the con- 

dition EL? < Y is substantially taken as the “smallness criterion” for rods, where L is 

the diameter of the rod cross section, and E is a number on the order of unity. Mean- 

while, it can be shown that y can be made arbitrarily small for a rod of fixed diameter 

because of the choice of the cross section. 

Similar refuting examples exist for all known formulations of the Saint Venant princi- 

ple. When the quantitative characteristics of stress decay of the type y are studied, the 
need for any heuristic formulations understandably drops out. 

In connection with the above, a number of questions arises, 

1) What is the actual energy (or stress) decay rate in cylindrical rods with the sim- 

plest cross-sectional shapes ? 

2) How can the energy decay rate in a cylindrical rod be estimated in terms of a 

parameter more accessible than the natural vibrations frequency. in terms of the geomet- 

ric characteristics of the cross section, for example (*) ? 

3) How can the energy decay rate be estimated in bodies whose geometric shape 

contains more arbitrary parameters than in a rod, for example, in bodies of cone type ? 
4) What is the energy decay rate in thin bodies of the plate and shell type ? 

5) What is the “energy” decay rate for arbitrary elliptical systems (**)? (Foot- 

note ( ** ) at the next page). 

* ) An example of this kind of estimate might be the estimate of the torsional stiffness 
of a rod, the electrostatic capacity of a body, and the f~damental natural frequency of 

membrane vibrations obtained in [3J. 



This area of questions has hardly been studied. Even the energy decay rate in a cir- 
cular rod is not known. Particular results have been obtained recently in [4-71. The 
results of this work refer to questions (2) and (3). 

2, A#lumptionl relative to slo#tfc energy, Let w = w”, wGL be 
projections of the displacement on the axes X, ~l;~,and let &ij be the strain tensor corn- 

ponents: &ij = W(i.j)* The parentheses in the subscripts here denote the symmetriza- 
tion operation, and the comma denotes differentiation with respect to xi, and the Latin 

subscripts take on the values 0, 1, 2. The zero super- or subscript is ordinarily omitted 

in writing the vector and tensor components, so that w” E w, &oa = Ed, e,, G E , 
etc. 

It is convenient to consider the elastic energy per unit volume U and the stress ten- 

sor components p ii dimensionless by referring them to the shear modulus p ( p is any of 

the elastic moduli for an anisotropic body). The elastic energy U for each particle of 

a body with the coordinates xi is a convex, differentiable function of the strain tensor 

components by assumption, U = U (xi, Eij). 

Without limiting the generality, it can be assumed that 

u (& 0) = 0, dU / dEij 1Eij=* z O 
(2.1) 

From the convexity of u in Eij there follows the inequality 

U < eijaU/ dEij (2.2) 

Let us assume that the elastic energy u can have quadratic forms in the strain tensor 

components as upper and lower bounds 

where A,, . . ., B, are constants independent of the coordinates. 

Let us introduce the function U*(si, pii) , the Young transform of the function 

U (zi, Eij) in the variable &ij 

U*(x”, p”j) = sup [piiCij - U(Z’, Elf)1 
Eij 

It follows from (2.3) and (2.4) 

(2.4) 

“/% (BI-LpappaP + B,-l p2 + 2B,-1p,p”) < U* (xi, Pi’) < (2.51 

$.qAr-lpafiPQfl -I- &-“p2 + 24-‘Papa) 

In particular, if U is a quadratic form in @ii, then substitution of the expressions for 
the strain tensor components eij in terms of the stress tensor components pii = dU / 
deij into U results in the relationship u (xi, eij(p”‘)) = U* (a?, pi’), and (2.5) 

(**) It is clear that the Saint Venant principle holds not only in elasticity theory. For 
example, the following changes must be made in the preceding exposition for the poten- 
tial flow of an ideal incompressible fluid : elastic energy -+ kinetic energy, stress - 
veiocity,self-balanced load in D - fluid discharge through SZ equal to zero. 
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yields an estimate of the elastic energy in terms of the quadratic forms in the stress ten- 

sor components. 

Let B denote the constant in the inequality 

Pa + PIP” < BU (2.6) 

If U is a quadratic form in Eijr then 

B-l = 1/a min (B,-l, 2B,-l) 

In the case of a homogeneous isotropic body 

UC+_ 
[ 
+ (e $&a)2 + 2e,p3 + 29 + 4&&a] 

hence we can set 

Al = 2a, A”=2+~h,:f:__cr=2’I’-“,i”~~v~a, AS=2 

B,=2max{i,i+p$}, &=2+$&= 

2 1+--“--l, 
[ I-2vp--1 

BS-2 

(O<a,(l, i<P<fm) 

Here a, p are Lame coefficients, v is the Poisson’s ratio, a, fl are arbitrary para- 

meters varying within mentioned limits. In particular, for a = 1, fJ = 3/2, v > 0 
we have 

Al = AZ = A, = 2, B,=B,=2+3+, B3 = 2 

B=4jl++) 

3. The conrtanta b and 6,. The inequality (1.6) yields a lower bound of 
the constant y in terms of the natural vibrations frequency of an elastic cylinder. Fur- 

ther we consider the estimates of y in terms of other body characteristics, including the 

constants b and b,. 
T he cons t a n t b. Let us consider the vector field wi in some bounded domain v 

For all the vector fields wi satisfying the constraints , a widt = 0, s (Wi,j - Wj,i) dlT = 0 
V V 

(3.1) 

the inequality 

(3.2) 

holds, where Q is part of the boundary aV of the domain V, and the constant b is 

the best constant in the inequality (3.2). Evidently b depends only on V, P and the 
elastic moduli. 

The inequality (3.2) follows from (2.3) and the inequalities (3.3) of Poincare [3, 81, 
(3.4) of Fhrlich [9], and (3.5) of Korn [lo - 131: 

9 udz = 0 
V 

s 
V 

(3.3) 

(3.4) 
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(3.5) 

The Kern inequality is satisfied for functions satisfying the second constraint in (3.1). 
Notes. 1. If Y is a cylinder of height h and 52 is the base of the cylinder, then 

b + 0 for h -+ 0 and h -+ + co (3.6) 

In order to see this, let us consider the displacement field (the cylinder axis is parallel 

to the s-axis. and the cylinder base 9 lies in the 2 = 0 plane) 

2nx 
w = U,COS~) w” --_ 0 , u. = const , h_, -Jr cm (3.7) 

c u,,ds = 0, h --, 0 

The conditions (3.1) are evidently satisfied for the displacement fields (3.7) and (3.8). 

Substituting (3.7) and (3.8) into (3.2) and replacing u by a large quadratic form actor- 
ding to (2,3), we obtain the upper bound for b 

b < B,n2 / h, h -+ cm 

b < $f \ u,,pa Pdci ,/ s (d + ; u,,uf) dci, h -+ 0 
k sz 

from which (3.6) follows. 
2. The property (3.6) of b permits the expectation that a domain with maximum 

value of b can be selected from all domains V with fixed base 9. 
The constant b,. J_et b,,denote the best constant in the inequality 

“-i w,2do <i U&r, w, = w+zi f3.9) 

Here ni are components of the vector normal to the boundary of the domain V. The 

field of the displacement vectors must still be subject to conditions excluding solid mo- 

tion. It is clear that these conditions should be less than for the inequality (3.2). For 
example, if Q is a domain in the plane 11: = const, then the constraints 

(3.10) 

can be taken as such conditions. 
Note. Analysis of the inequality (3.9) in the displacement fields (3.7) and (3.8) 

shows that for b, the property (3.6) holds, 

4. Estimate of the energy decay rate in terms of the constant 
b. Let external forces applied to CC?, cause surface loads pi at a section of the body 
&! (z) , Let v’ (z) denote a subdomain of the domain v (x) with the base 52 (z), for 
which the constant b is known and takes on the greatest possible value, and let us exam- 
ine the strain of the body V’ (x) by the surface forces pi. According to (2.2). (3.2) 
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and the equilibrium equations p,jij = 0, pi’ nj = pi, we have for the elastic energy 
E’ of the body V’ (x) 

If a vector corresponding to the solid motion is added to the displacement vector in 
(4.1). then the left side of the inequality does not change since the elastic energy is in- 
variant with respect to translations and rotations, and the right side does not change be- 
cause the load is self-balanced in f! (2). We use this arbitrariness to satisfy the con- 

straint (3.1). By the Cauchy -Bunlakowski inequality 

Hence 

On the other hand (see [ 141, a more general assertion is proved in the supplement) E < 
E’. Using (2.6), we obtain from (4.2) 

bE \< ’ PiPids ~ B S UcE5 
s 
n R 

The inequality (4.3) results in the following estimate for y: 

b/B<y 

(4.3) 

(4.4) 

Note. For an isotropic body with 3\. >, 0 the constant B is given by the formula 

where p is an arbitrary number between 1 and + 00. Since b and y are independent 

of @, then inf B (8) = 4 (1 f il / 2~) can be taken as B . It follows from this formula 

that the estimate (4.4) is degraded for larger h / p, since B - 03 as h / p + 00. 

This is apparently not related to the crux of the matter. Let us note that the estimate 

(1.6) possesses the same property. In fact, 

1 / (f)Mu2) < H I i+$ 

can be written for the fundamental natural vibrations frequency, where the constant H 

is independent of the elastic moduli and is determined only by the body geometry. 

Hence s (I) < I@ IL&E / p* 

and the estimate (1.6) corresponds to the inequality 

K’h 11,,& ! IL&j < Y 

For an isotropic body p,,, = 2p, p,[ =: 3h + 2p, and the estimate for y is degraded as 

h I p increases. 

6. Estimation of the energy dsciy r&ta in term8 of b,. Theprob- 
lem of calculating h, exactly as the problem of calculating wOin the estimate (l-6)) 
are complex problems. In this connection, the estimation of y in term of h,, is of inte- 
rest since it is simpler to seek the constant b, than b. 

In order to obtain more accurate estimates, we assume that the body is physically lin- 
ear (U is a quadratic form in the strain tensor components). We understand 1/’ (x) to 



be a subdomain of V (2) for which the constant h,,is known and takes on a possibly 
larger value. 

Just as in Sect. 4, we have 

E’=$ 
s 
’ t&jd+- ’ 

s 
p’w,dci = - + 

a 
’ (pw + pawa) dc (5.1) 

\“(X) IJ Q(x) 
We use the arbitrariness in the selection of the displacement vector in order to satisfy 

the constraints (3.10) as well as the relationships 

(5.2) 

The inequality 
h2, ’ 

I 
w,wzda 6 ht[JE ‘@dG (5.3) 

n n 

holds for two-dimensional vector fields subjected to the conditions (5.2). It follows 
from the twordimensional analogs of the inequalities (3.3) and (3.5). 

By using (3.9), (5.3) and the Cauchy-Buniakowski inequalities, we find from (5.1) 

2E’ < (5 p’do)‘;‘(l w2dsj”’ + (i p,p.dsr ($ wawada)“= < (5.4) 

(2B, ;Uda) 

n 
8 

“’ (&lE’)‘/z + B ’ 

n 

( s?, Uds)‘l’(A;2j 2A;‘Udcsj’:‘< 
n 

aE’ + 
( 
f a-1B2b;,1 + (2B,A;1)l~~A~‘j 1 Uds 

n 
where a is an arbitrary positive parameter. From (5.4) 

E<E’< (2 - a)-1(1/2a-1B2bn-1 -I- (2B3A1-‘i43’2) $> Uda 

Minimizing the factor in the right side with respect to a and substituting the result in 
(1.1). we arrive at the following lower bound for y: 

(5.5) 

Both b,and A, in the left side of (5.5) depend on x . 
Notes. 1. For an isotropic body, we should put Bs = 2 in (5.5) should take the 

maximum value A, = 2 and the minimum value, B2 = 2 $ h / p since the right 

side of (5.5) is a decreasing function in B, and a growing function in A, 

2 VF b,, (I- 2v) - 2 

(1 -VI Ae \<r (5.6) 

2. The constant L& can be estimated in terms of the Poincare constant (3.3) and the 

Korn constant K of the domain Q 

A,-2 < AP--~K (5.7) 

The best constant in the inequality 
l 

1 
wa,pw”*Pda < K c&Pdd 

5 
(5.8) 

n n 
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is here understood to be the Korn constant. The functions w, in (5.8) satisfy the second 
constraint in (5.2). Using (5.7). it is possible to rewrite (5.6) as 

4(1 2 1/Eb (1 - 2v) 
(*_& <r (5.9) 

6. The entimrte 6, for a .rod, let us consider a cylindrical rod of height 
h (0 < x < h) with cross section 9. We take the origin of the coordinate system xa 
at the center of gravity of the cross section. We introduce the notation 

h h 

u@")= '~~(~-~)~~/~~(~-~)~~ 
I 

@.1) 

0 0 

j.qs) = iwa (x 
0 

-*)dx/~(x-qdx 
0 

In constructing the estimate 6, it is convenient to impose the constraints 
L 

a 
udcs = 0, 

s (“,a - qa)da = 0 
61 

(6.2) 

instead of the constraints (3.10) on the displacement vector components. 
The preceding reasoning is evidently independent of the kind of constraints excluding 

the solid motion. 
6.1. We prove the inequality 

wo2ds < (1 + a) 1 u2da + $= (I + a-l) h 5 3 E2dadx 
n Cl0 

(6.3) 

where w0 = w (0, xa) and a is an arbitrary positive number. 
In fact r 

w(x,xa)-wg= 
!, 
“dx, E z $ 
0 

Multiplying by C(b - 2)~ 1 ,$s and integrating with respect to T, we obtain 

w~=~-~~-s~~~-~~x 

X 1 

(s > 
‘edg dx- u-h ‘(1 

\ 
- 3E2 + 2C) E (a xE) & 

0 0 

Squaring both sides &d using the Cauchy-Buniakowski inequalities, we arrive at the 
relationship h 

wo2 <(i + a)u2(xa)-j- (1 + a-+&s c2dx 
0 

which yields (6.3) when integrated over the domain &? . 
6.2. It has been shown in [15] that the elastic energy of the Reissner model yields 

an accurate lower bound for the elastic energy of a cylindrical body (plate or rod). Let 
us write the appropriate inequality in application to the case under consideration as 

16.4) 
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6.3. Let rtt denote the best constant in the inequality 

(6.5) 

Here II and & satisfy the constraints (6.2). 

6.4. From (6.3) - (6.5) we obtain 

h 

max (I + a) I)?, -$-(I + a-l) 
15s 

Udsck 
fta 

~nimi~ng the coefficient in the right side with respect to a, we arrive at the follow- 

ing bound; 

! 
Ill -+- 

26h -1 
-----I 35112 , < bn (6.6) 

There remains to estimate the constant nZ in terms of more accessible characteristics 
of the cross section. 

6.5. Let x denote the best constant in the inequality 

s 
xC,xaaS 

$2 (6.7) 

Here ea@ is the two-dimensional Levi-Civita symbol, Evidently x -z 0 when 52 is 

a circie. 

6.6. Let A denote the best constant in the inequality 

A21 u"da$ (u,,w* + &c,ca) da (6.8) 
$1 

where L 

s 
Ud5 = 0, Qc, = ’ t+dG 

a 
R n 

The letter 52 also denotes the area of the domain $2. . Evidently 

A-2 < Ap-2 

6.7. Let us make the substitution qK -+ q’s in the inequality (6.5) 

(6.9) 

(6.10) 

(6.12) 

where c” is defined by the formula (6.9). 
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According to the second constraint in (6.2) and (6, ll), (6.121, the fum+XiOns I#‘” satis- 

fy the condition 
s rl’=“do = 0, 
n 

5 (&,p - &)& = 0 (6.13) 
ba 

Hence, by virtue of (5.3) 

s 
$(L?,P,g@,a)do = ’ q&3)~‘@‘Pks > AC2 

I s 
~*‘lpd3 (6.14) 

6-J n 
Therefore 

n 

qa’qfa + (u,~ + c, + we,,& + $,‘)‘] do > (6.15) 

AZ 
5A1‘43h3Ae 

24 (5.43 + d&*Ae2) 

Minimizing the right side of (6.15) with respect to o and using (6.7) and (6.8). we ob- 

We hence find 
n n 

m < A--1(1 - x)-’ A-2 (6.16) 

1 12 (5As + Blh*Ae*) 

2 5 A1 Ash3A,*A* (i - x) ’ =G bn (6.17) 

Maximizing the left side of (6.17) with respect to h results in a relationship of the form 

\(b* (6.18) 

Note . An essential property of the constant b, results from (6.18) : b, can be boun- 

ded from below by a quantity which diminishes h -fold as the cylinder cross section is 

stretched h-fold. This follows from the fact that the constants A, A,, Ap acquire a 
factor 1 / h, while the constant x does not vary as the cross section is stretched. Ac- 

cording to (5.5). r possesses an analogous property. 

7, Eatlmation of the rate of energy drcrsats in it semi-infinite 
circular i8otropic homogcnsou8 rod, For a circular rod x. = 0 and the 

Poincard and Korn constants are known 

Ap ‘= jr-‘, K=4 

Here j = $.8&j is the first zero of the derivative of the Bessel function J,(s) and 

r is the cross-sectional radius. The Korn constant has been calculated in [16]. 
In the case of a homogeneous isotropic rod A a = 2 and the constants A, and As 

can vary as functions of the parameter a (see Sect. 2), maximizing the left side of 
(6.17) with respect to a. For simplicity we set a = 1, A, = A,= 2. Moreover.in 
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conformity with (6. lo), let us replace the constant A,-’ by A;‘. We finally obtain the 

following estimate of b, in terms of hp, Aer h: 

1 
Y-- ‘! I 

6 (5 + h*A,? 1% -1 

5h3he2Ap2 - + 70 1 < 4% 
or in terms of hp, K and h 

1 6 (5K + h2Ap2) 13h -’ 

2 5h3A 4 P 
$7 1 < bn (7.1) 

Maximizing the left side with respect to h, we obtain 

'14~ < b, (7.2) 

The inequalities (5.9) and (7.1) yield the lower bound 

F” 
of the decay rate for an arbitrary load self-balanced at the 

endface, in particular 

HZ’/ 0.35r-’ < y, v = 0; 0.27r-’ < y, v = ‘I, 

Fig. S 0.22r-’ < y, v = 1/Q 

In conformity with the Note in Sect. 4, the estimate is de- 

graded as Y = 1/Z (1 f p / A)-’ increases. The energy decay rate for an arbitrary 
load is unknown. The decay rate for an axisymmetric load applied to the endface is cal- 
culated in a number of papers (see [ 17, 181). The corresponding results can be consid- 

ered an upper bound for y 

y < 5r-l, v = 0; y < 5.4r-‘, v r= II4 

8. Enrrgy decry rate fn cone-type bodies. Let us consider bodies 
whose sections by the planes .X = const are similar (see Fig. 2), i.e. 

Q (2) = {.X, P : za = a (x)3$, x$ E Q,}, k (0) - 1 

kt us also assume that h (x) is a nondecreasing function of 2. Then a cylinder with 

base Q (5) can be taken as the subdomain V’(Z) for the domain J’ (z) , and the con- 

stant &of the appropriate cylinder as the constant b,, in (5.9). According to (5.9) and 

the Note in Sect. 6 

b,(oY~ (2) < b,(z), Y(OVh (x) < Y (x1 
Therefore, for such bodies 

E@KEKVexp[- r(O) (+&-I 
n 

In the case of a conical body whose 

0), ?L (z) = 1 4- z / x0, hence 
apex is at a point with the coordinates (- x0, 0, 

E (5) < E (O)(l f CE / z,)-WN (8.1) 

As x0 + 00 the cone is converted 
the exponential decay law (1.5). 

into a cylinder and the estimate (8.1) goes over into 

9. Supplement, About the elrrtic energy of bonded bodlea. 
The total elastic energy diminishes when a body, deformed by certain surface forces, is 
bonded to an undeformed body along a load-free surface. Some extensions are formula- 
ted below. 
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Let us examine the problem about the minimum of the functional 

I = E - F/dx- f,ua& s 
V 

s 
i?V 

dx = dxl . . . dx” 

, 
E = u 

s ( 

aua \ ,i, ua - dx 
V ’ axi / 

The Greek superscripts here take on the values 
1 9 * * *, m, and the Latin superscripts the values 

S,’ 5 
1 , . * -7 n, V is the domain of n-space, F,, f, 

are given functions of xi. The minimum is 

Fig. 3 sought over all functions ~a taking the given 

values u= = CpQ on 2 

on the part Z of the boundary i?V of the domain V 

Let the domain V be divided into the subdomains V, and I’,, with the boundaries 

aV, and at’,. By Z, and Z,, S, and S, we denote the parts of the surfaces Z and aV 

belonging to aV, and aV,, respectively, by 8 we denote the hypersurface separating 

V, and V, (see Fig. 3), and we form the functionals @, are arbitrarily assigned func- 
tions) II = El - 

s 
F,uadx - fauada - 

c 
p,u”da 

c s 
VI Sl n 

El = Udx, 
s 

Ez = 
s 
* Udx, z = I1 + Is 

VI VI 
Since the sum of the minima does not exceed the minimum of the sum 

inf I = inf (1l+ 1.2) > inf II -f inf I.2 
ua ua ZP ua 

we obtain (the minimal values of the functionals are marked with the zero superscript) 

Ilo + r,o < P (9.1) 

9.1. We consider two linearly elastic bodies V, and VZ deformed by surface and 

volume forces. Some sections Z, and Z, of the surfaces of the bodies V, and VI can 

be rigidly clamped (u” Iz,,z, = Oj. Let the boundaries aV, and aV, of the bodies V, 

and V, contain the surfaces 52, and Q, representing two sides of some surface Q upon 

superposition, and let forces acting at points corresponding to one another during super- 

position be equal and opposite in direction. Then the sum of the elastic energies of the 

bodies V, and V, is less than the elastic energy of a body obtained as a result of bond- 
ing V, and V, along Q. (The bodies are said to be bonded along Q if the u3 are con- 

tinuous upon going across 9.). 
In fact, the functionals E, E, and E, are quadratic and have the meaning of an energy 

in linear elasticity theory. Under the rigid clamping condition 

1” = __E’, Ilo = -El’, Ia = --Es’. 

The assertion formulated results from the inequality (9.1). 
9.2. Let us consider two elastic bodies V, and V, deformed by displacements given 



on the surfaces S, and C 2 . The boundaries aV, and av, of the bodies Vi and vz con- 
tain the surfaces 1;2, and Q,, which represent the superposition of two sides of some sur- 
face SZ. Then the sum of the elastic energies of the bodies v, and l’, is greater than 
the elastic energy of the body obtained as a result of bonding the bodies v, and h; 

along sz. 
This assertion follows directly from (9.1) since I0 = E’, f = El0 and rz” -.z E: in 

the case under consideration. 

Notes. 1. If the bodies v1 and V, are deformed by surface and volume forces 

and by nonzero displacements given on the boundary, then the energy of the bonded 

bodies can be both greater as well as less than the sum of the energies of the bodies 

prior to bonding. 

2 . The property of convexity of U was not used in deriving (9.1). The proof of the theorem 

about the bonding of elastic bodies is based on the Castigliano principle [ 143 for whose 
construction the convexity of U is essential [ 1.91. Let us note that in the geometrically 

nonlinear theory of elasticity u is not a convex function of the displacement gradient. 

3. With some terminology changes (see footnote, p. 80’2) the assertions (9. I) and 
(9.2) go over into a number of other mechanics problems including the problem of the 

steady potential flow of an ideal incompressible fluid and the problem of steady heat 

conduction. These assertions permit reduction of the elastic energy estimation (or of the 

kinetic energy and dissipation, respectively) for a body with complex geometric outlines 

to the estimation for a body with a simple geometric shape. 
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INHOMOGENEOUS LAYER BONDEDTO A HAWP-SPACE UNDER THE ACTION 
OF INTERNAL AND RXTERNAL FORCES 
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We obtain a solution of the problem on the stress-strain state of an inhomogene- 
ous isotropic layer, the elastic characteristics of which are bounded and integra- 

ble functions of a single Cartesian coordinate. The layer is bonded continuously 

to a homogeneous half-space, and is acted upon by the mass forces. 
The problem arises in the analysis of coverings. The earlier papers dealt with 

particular cases in which an open surface was acted upon by a normal load. In 

[l, 21 such a problem was studied for an exponential law of variation of the mo- 

dulus of elasticity with depth, with the Poisson’s ratio remaining constant, while 

in p] the same problem was studied for a hyperbolic law. This was done by con- 
sidering an axisymmetric deformation of an inhomogeneous layer resting on a 

perfectly rigid support. In [4] a solution was obtained for an incompressible ma- 

terial in which the shear modulus changed linearly with depth, while in [5, 61 a 

solution was obtained for an arbitrary law of change and a constant Poisson’s ra- 
tio. The method used in the latter case deserves attention. In the course of solu- 

tion the layer was replaced by a system of n interconnected homogeneous iso- 
tropic plates of equal thickness, the elasticity moduli of which were defined by 
a given function of the inhomogeneity. Passage to the limit a 2 00 gave a for- 

mally exact solution of the initial problem. It appears, that the action of shear- 
ing loads and forces applied within the layer has, so far, not been investigated. 

1. Using the method developed in (71, we split the system of equilibrium equations 


